Combining Multiple Sources of Knowledge in
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Additive baseline fusion vs multiplicative fusion
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= Amplifying or suppressing the feature
activations of each network based on their
agreement

" Knowledge exchange between two networks
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 Amplified net: Jumping (O)
Spatial net: Boxing (X)
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Amplified net: Tennis (O)
| Spatial net: Trampoline jumping (X)

Feature Amplification

Effects of feature amplification
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