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Viscous fluids are common materials as we see their examples, 
such as honey, caramel sauce, melted chocolate, machinery oils, 
bodily fluids, in our daily lives, and thus simulating them has been 
required in various fields including movies, video games, and 
virtual simulators. 

Motivation 

Problems 

Previously proposed particle-based, Smoothed Particle 
Hydrodynamics (SPH) methods assume that fluid is inviscid or 
slightly viscous, and thus an effective SPH method has not yet been 
established. There are two main reasons:  
• Previous SPH methods use Laplacian form of viscosity by 

dropping the off-diagonal component of the unsimplified, full 
form of viscosity, and consequently fail to handle variable 
viscosity and generate rotational viscous fluid behaviors, such as 
coiling and buckling.  

• Previous SPH methods adopt explicit viscosity integration, which 
severely restricts time steps, making it infeasible to simulate 
viscous fluids within a practical time. 

Our method offers the following advantages: 
• It is efficient and robust with larger time steps and higher 

viscosity because of implicit integration. 
• It can accurately handle variable viscosity and plausibly 

generate coiling and buckling phenomena by solving the full 
form of viscosity. 

Contributions 

Numerical Stability 

Numerical stability test with different combinations of time steps 
and viscosities. (Top left) initial state. (Top middle) explicit 
integration with Δ𝑡 = 5.0 × 10−6 s and 𝜇 = 1.0 × 103 kg/(s⋅m). 
(Top right) explicit integration with Δ𝑡 = 1.3 × 10−3  s and 
𝜇 = 1.0 × 103  kg/(s⋅m). (Bottom left) implicit integration with 
Δ𝑡 = 1.3 × 10−3 s and 𝜇 = 1.0 × 103 kg/(s⋅m). (Bottom middle) 
explicit integration with Δ𝑡 = 5.0 × 10−6  s and 𝜇 = 5.0 × 104 
kg/(s⋅m). (Bottom right) implicit integration with Δ𝑡 = 1.0 × 10−4 s 
and 𝜇 = 5.0 × 104 kg/(s⋅m). 

Performance 

Performance profile for 
explicit integration and 
implicit integration. Implicit 
integration outperforms 
explicit integration by a 
factor of 3.4. 

Buckling Comparison 

Buckling test. (Top) Laplacian 
form of viscosity with particle 
view (left) and mesh view 
(right). (Bottom) Full form of 
viscosity with particle view 
(left) and mesh view (right). 
Full form can generate 
buckling while Laplacian form 
fails. 

Viscous Thread Coiling 

Viscous thread coiling. 
Our method can 
generate complex 
coiling phenomenon. 

Variable Viscosity 

Viscous dragon with 
spatially varying 
viscosity. Our method 
can accurately handle 
variable viscosity. 
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We discretize the fluid volume using SPH and solve the Navier-
Stokes equations. To address the two problems, we solve the full 
form of viscosity using implicit integration: 
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where 𝒖: velocity, 𝑡: time, 𝑖: particle index, Δ𝑡: time step, 𝜌: density, 
𝒔: viscous stress tensor, and 𝜇: dynamic viscosity. Consequently, we 
obtain a linear system from the implicit formulation as 

𝑪𝑼𝑡+1 = 𝑼, 
where 𝑪: coefficient matrix, 𝑼: concatenation of velocities. The 
resulting linear system is solved with a specialized sparse matrix 
structure and a conjugate gradient solver.  

Method 


