Rolling Shutter Camera as High Frequency Tracker

Akash Bapat, Enrique Dunn, Jan-Michael Frahm

Problem

High frequency tracking of head pose for augmented reality applications

Solution

Use a cluster of high fps rolling shutter (RS) cameras assuming a static indoor environment. Use 10 stereo-pairs of RS cameras pointing in all directions.

Small Motion Assumption

Assuming small motion gives us a simplified model which reduces computation time. This in turn lets us work at higher frequencies justifying the small motion assumption. These two reinforce each other.

Linear Model

Rolling shutter camera as 1-D sensor

Rolling shutter image integration

Each row can be considered as 1-D image of W pixel width. RS camera captures such row samples at fps*H frequency. Hamming distance can be used for matching if descriptor is binary.

$$X_{cam}^{t+1} = V \, dM \ * M_{prev} \, V^{-1} X_{cam}^{t}$$

Estimate *dM*: Each camera gives one equation giving a system of linear equations. Weighted least squares is constructed which factors in the confidence in each camera.

 $V : [R|t] \text{ of camera} X_{cam}^{t} : [0, y, d, 1]^{T}$ M_{prev} : motion till previous row X^{t+1}_{cam} : [s, \boxtimes , \boxtimes , W]^T

Row image descriptor

Image

Double derivative of row

Binary descriptor

Simulation Results

Hi-Ball real motion data in synthetic room

Supported by NSF award #5037304 II-New: Seeing the Future: Ubiquitous Computing in EyeGlasses

